Звук

Летучие мыши

Летучие мыши развили очень чувствительный слух, чтобы справляться с их ночной деятельностью. Их диапазон слуха зависит от вида; самое низкое оно может составлять 1 кГц для некоторых видов, а для других видов максимальное значение достигает 200 кГц. Летучие мыши, способные распознавать 200 кГц, плохо слышат ниже 10 кГц. В любом случае наиболее чувствительный диапазон слуха летучих мышей уже: примерно от 15 кГц до 90 кГц.

Летучие мыши перемещаются между объектами и определяют местонахождение своей добычи с помощью . Летучая мышь издает очень громкий короткий звук и оценивает эхо, когда оно отскакивает. Летучие мыши охотятся на летающих насекомых; Эти насекомые возвращают слабое эхо на зов летучей мыши. Тип насекомого, его размер и расстояние можно определить по качеству эха и времени, которое требуется для отражения эха. Существует два типа вызова с постоянной частотой (CF) и частотной модуляцией (FM), которые уменьшаются по высоте тона. Каждый тип раскрывает различную информацию; CF используется для обнаружения объекта, а FM используется для оценки расстояния до него. Звуковые импульсы, издаваемые летучей мышью, длятся всего несколько тысячных долей секунды; паузы между вызовами дают время прислушаться к информации, возвращающейся в виде эха. Данные свидетельствуют о том, что летучие мыши используют изменение высоты звука, производимое эффектом Доплера, для оценки своей скорости полета по отношению к объектам вокруг них. Информация о размере, форме и текстуре формируется для формирования картины их окружения и местоположения их добычи. Используя эти факторы, летучая мышь может успешно отслеживать изменения в движениях и, следовательно, выслеживать свою добычу.

Патология

Нарушения функции Слуха (дизакузии) весьма разнообразны и касаются всех его параметров. Наиболее распространенной формой является снижение остроты С. — гипакузия. Она может быть обусловлена как нарушением механизма звукопроведения в структурах среднего уха, так и повреждением образований внутреннего уха (см.) и выше лежащих нервных путей и центров слуховой системы (см. Слуховые центры, пути). В зависимости от этого различают кондуктивную и нейросенсорную формы тугоухости (см.). В первом случае острота С. снижается преимущественно на тоны, проводящиеся через воздух, во втором — в равной степени на тоны, проводящиеся через воздух и через кости черепа. В результате при кондуктивной тугоухости на аудиограмме появляется интервал между кривыми воздушного и костного проведения звуков, при нейросенсорной тугоухости этот интервал отсутствует или незначителен по величине.

Более редкой формой нарушения С. является гиперакузия, заключающаяся в ненормально повышенной восприимчивости к звукам, в результате чего как тональные и шумовые сигналы, так и речь обычной интенсивности вызывают неприятные и даже болезненные слуховые ощущения (акузалгия); иногда наблюдается при поражении лицевого нерва (см.).

В нек-рых случаях, когда левое и правое ухо неодинаково воспроизводят высоту звукового сигнала, возникает симптом двоения, или диплакузии. При отосклерозе (см.) наблюдается феномен паракузии, заключающийся в улучшении остроты С. в шумной обстановке. Предположительно он объясняется возникающей в условиях шума повышенной возбудимостью рецепторов внутреннего уха.

Библиография: Тугоухость, под ред. Н. А. Преображенского, с. 9, М., 1978; Физиология сенсорных систем, под ред. A. С. Батуева, с. 159, 341, Л., 1976; Физиология сенсорных систем, под ред. Г. В. Гершуни и др., ч. 2, с. 130, Д., 1972; Вekesу G. Experiments in hearing, N. Y. а. о., 1960; Handbook of sensory physiology, ed. by H. Autrum a. o., v. 5/2, B. a. o., 1975.

Частотный диапазон человеческого голоса в музыкальной терминологии

Отдельно и обособленно в музыке отводится роль человеческому голосу в качестве вокальной партии, ведь природа этого явления воистину удивительна. Человеческий голос столь многогранен а диапазон его (в сравнении с музыкальными инструментами) наиболее широкий, за исключением некоторых инструментов, например фортепьяно. Более того, в разных возрастах человек может издавать различные по высоте звуки, в детском возрасте до ультразвуковых высот, во взрослом возрасте мужской голос вполне способен опускаться крайне низко. Тут, как и ранее, крайне важны индивидуальные особенности голосовых связок человека, т.к. встречаются люди, способные поражать своим голосом в диапазоне 5 октав!

Текущая музыкальная классификация делит голоса по возрасту и полу:

  • Детские
  • Альт (низкий)
  • Сопрано (высокий)
  • Дискант (высокий у мальчиков)
  • Мужские
  • Бас-профундо (сверхнизкий) 43.7-262 Гц
  • Бас (низкий) 82-349 Гц
  • Баритон (средний) 110-392 Гц
  • Тенор (высокий) 132-532 Гц
  • Тенор-альтино (сверхвысокий) 131-700 Гц
  • Женские
  • Контральто (низкие) 165-692 Гц
  • Меццо-сопрано (средние) 220-880 Гц
  • Сопрано (высокие) 262-1046 Гц
  • Колоратурное сопрано (сверхвысокий) 1397 Гц

Чувства в числах, звуках и образах:

• горе даёт вибрации — от 0,1 до 2 Гц;• страх — от 0,2 до 2,2 Гц;• обида — от 0,6 до 3,3 Гц;• раздражение — от 0,9 до 3,8 Гц;• возмущение — от 0,6 до 1,9 Гц;• вспыльчивость — 0,9 Гц;• вспышка ярости — 0,5 Гц;• гнев — 1,4 Гц;• гордыня — 0,8 Гц;• гордость (мания величия) — 3,1 Гц;• пренебрежение — 1,5 Гц;• превосходство — 1,9 Гц;• великодушие — 95 Гц;• благодарность (спасибо) — 45 Гц;• сердечная благодарность — от 140 Гц и выше;• ощущение единства с другими людьми — 144 Гц и выше;• сострадание — от 150 Гц и выше (а жалость только 3 Гц);• любовь (что называется, головой, то есть когда человек понимает, что любовь — это хорошее, светлое чувство и большая сила, но сердцем любить ещё не научился) вибрации — 50 Гц;• любовь, которую человек генерирует своим сердцем ко всем без исключения людям и всему живому, — от 150 Гц и выше;• любовь безусловная, жертвенная, вселенская — от 205 Гц и выше.
 

 
На протяжении тысячелетий частота вибраций (т.е. колебаний в секунду) нашей планеты составляла 7,6 Гц. Физики называют её частотой Шумана. Учёные часто сверяли с ней свои приборы.

Однако частота Шумана начала в последнее время резко возрастать.

  • январь 1995 — 7,80 Гц,
  • январь 2000 — 9,30 Гц,
  • январь 2007 — 9,80 Гц,
  • январь 2012 — 11,10 Гц,
  • январь 2013 — 13,74 Гц,
  • январь 2014 — 14,86 Гц,
  • февраль 2014 — 14,99 Гц,
  • март 2014 — 15,07 Гц,
  • апрель 2014 — 15,15 Гц.

Человек чувствовал себя комфортно в этих условиях, так как частота вибраций его энергетического поля имела такие же параметры  7,6-7,8 Гц. Даже если рассматривать ситуацию с точки зрения науки, то становится понятным, что человек, не повышающий свои вибрации, так или иначе вскоре  станет не жизнеспособным, и ему уже не помогут ни высокие должности, ни накопленный капитал.
Музыка — это вибрация, а значит, энергия.
 

 
Голос каждого человека имеет свою звуковую частоту, и наши мысли — это тоже волны, которые либо полны гармонии, либо — диссонанса.  
 
Каждый человек желает обладать внутренней гармонией. И важным шагом является осознание того, какую музыку мы слушаем и какое воздействие она оказывает на наш организм.
 
Настоящая музыка – это нечто неземное. Такую музыку, как и научные законы, не создают, а только открывают. Эта музыка существует вечно.
 
 
 
Подготовила: Natasha (Deutschland)
 
PS от А…
 

Основные звуковые характеристики

Звуковые колебания — это уникальный способ передачи энергии без передачи материи, они представляют собой упругие колебания в какой-либо среде. Когда речь идет об обычной жизни человека, такой средой является воздух. Он содержат молекулы газов, которые могут передавать акустическую энергию. Эта энергия представляет чередование полос сжатия и растяжения плотности акустической среды. В абсолютном вакууме звуковые колебания передать невозможно.

Любой звук является физической волной, и содержит все необходимые волновые характеристики. Это частота, амплитуда, время затухания, если речь идет о затухающем свободном колебании. Рассмотрим это на простых примерах. Представим себе, например, звук открытой струны соль на скрипке при извлечении его смычком. Мы можем определить следующие характеристики:

тихий звук или громкий. Это не что иное, как амплитуда, или сила звука. Более громкому звуку соответствует большая амплитуда колебаний, а тихому звуку — меньшая. Звук, имеющий большую силу, можно услышать на более далеком расстоянии от места возникновения;

длительность звука. Это всем понятно, и каждый способен отличить раскаты барабанной дроби от протяженного звучания хоральной органной мелодии;

высота звука, или частота звукового колебания. Именно эта основополагающая характеристика и помогает нам отличать «пищащие» звуки от басового регистра. Если бы не было частоты звука, музыка было бы возможна только в виде ритма. Частота измеряется в герцах, а 1 герц равен одному колебанию в секунду;

тембр звука. Он зависит от примешивания акустических дополнительных колебаний – формант, но объяснить его простыми словами очень легко: даже с закрытыми глазами мы понимаем, что звучит именно скрипка, а не тромбон, даже если у них будут совершенно одинаковые вышеперечисленные характеристики.

Тембр звука можно сравнить с многочисленными вкусовыми оттенками. Всего у нас есть горький, сладкий, кислый и соленый вкус, но этими четырьмя характеристиками далеко не исчерпываются всевозможные вкусовые ощущения. То же самое происходит и с тембром.

Остановимся подробнее на высоте звука, поскольку именно от этой характеристики и зависит в наибольшей степени острота слуха и диапазон воспринимаемых акустических колебаний. Что же такое диапазон звуковых частот?

Термины

  • Частота – количество периодического события за временную единицу: f = n/t.
  • Герц – один период в секунду, единица частоты (Гц).
  • Период – длительность цикла в повторяющемся событии.

Звуковые волны обладают частотой, то есть количеством вхождений повторяющегося события за временную единицу.

Частота колебаний звуковой волны основывается на длине волны и скорости звука:

Нижний рисунок демонстрирует связь частоты и длины.

Звуковая волна формируется из источника, вибрирующего на частоте (f), и распространяется при v на длине λ

Частота звуковой волны определяет и другие характеристики. Можно использовать частоту и длину, чтобы отыскать скорость волны. Не забывайте, что она зависит от того, в какой среде перемещается звук. Высокие показатели появляются в твердых веществах. Формула: vs = fλ.

Период – длительность цикла повторяющегося события. В анимации показаны различные частоты и периоды (от наименьшего к наивысшему).

Три мигающих огонька: от самой низкой частоты (сверху) до наивысшей (снизу). F – частота в Герцах. Т – период в секундах

Механизм и причины развития высокочастотной потери слуха

За улавливание и преобразование звуковых колебаний в человеческом ухе отвечают волосковые клетки, находящиеся в улитке. Отмирание или повреждение этих рецепторов слуховой системы приводит к тому, что мозг не получает необходимый электрический импульс и не может интерпретировать звук.

Разные участки улитки отвечают за улавливание звуков разной частоты. Именно особенность их расположения в нижних и верхних частях обуславливает в большинстве случаев потерю слуха сначала на высоких частотах, а уже после на низких.

Причин, по которым возникают нарушения восприятия высоких частот, существует довольно много. К таким можно отнести:

  • Шумовое воздействие. Это довольно распространённая причина возникновения высокочастотной глухоты. Причём воздействие может носить как постоянный характер и разрушать волосковые клетки изо дня в день, так и одноразовый, наносящий существенный урон. Примером последнего может быть взрыв или выстрел.
  • Возрастные изменения. Пресбиакузис или возрастная потеря слуха – процесс не быстрый. И в силу того, что он обычно протекает на оба уха, его обнаружение происходит, когда человек становится неспособным разобрать речь в шумной обстановке.
  • Генетика. Люди, находящиеся в родстве с теми, кто столкнулся с высокочастотной потерей слуха, должны быть особенно внимательны, т.к. они имеют генетическую предрасположенность к развитию недуга.
  • Применение лекарственных препаратов. Лечение одного заболевания, как это ни прискорбно, может спровоцировать возникновение другого. Некоторые лекарства имеют статус ототоксичных и вредят слуху человека.
  • Заболевания. Некоторые болезни, такие как болезнь Меньера и хронический средний отит у детей, способны стать причиной развития проблем в работе органов уха.

Звуковые волны

Когда тела колеблются и вызывают колебания окружающего воздуха или иной среды, они издают звуки. При этом частицы среды тоже начинают колебаться, образуя волну, проходящую в среде. Частицы среды могут совершать колебания как вдоль направления распространения волны, так и поперек. Соответственно различают продольные и поперечные механические волны.

Звуковые волны кажутся схожими с волнами на воде. Если на поверхность озера бросить маленький камень, то от места падения в разные стороны побегут волны. Возникают они потому, что частички воды на поверхности совершают колебания и эти колебания передаются следующим частичкам, то есть волной называется процесс распространения колебаний со временем. Волны на поверхности воды мы можем видеть непосредственно, они поперечные, ведь частицы воды движутся вертикально, вверх-вниз, а волна распространяется горизонтально. Но многие механические волны невидимые, например, звуковые волны, распространяющиеся в воздухе, мы можем только слышать. Ученые установили, что звуковые волны отличаются от волн на поверхности воды тем, что они продольные. Частицы среды колеблются взад-вперед вдоль направления движения волны, а не перпендикулярно ему, как в поперечных волнах. Еще одно отличие в том, что звук распространяется во всех направлениях, а не только горизонтально, как волны по воде.

Волны изображают с помощью диаграмм, на которых указывают частоту волн (количество колебаний за секунду) и их амплитуду (силу волн). Высокие звуки – это высокочастотные волны, низкие звуки – это низкочастотные волны. Звук с частотой более 20 000 Гц называют ультразвуком. Чем больше амплитуда волны, тем громче звук. По мере удаление от источника звука амплитуда падает и звук стихает. Высокие звуки, такие, как пение птиц, — это высокочастотные волны. Низкие звуки, например рев двигателя, — это низкочастотные волны.

Прибор, который позволяет увидеть форму звуковой волны, называется осциллографом.

В разных средах звуковые волны распространяются с разными скоростями. При 20°С в сухом воздухе скорость звука составляет 343 м/с. Сверхзвуковая скорость — это скорость выше скорости звука. Когда самолет выходит на сверхзвуковую скорость, возникает звуковой удар. Сверхзвуковые скорости измеряются в Махах: 1 Мах равен скорости звука. «Конкорд» летает со скоростью более 2 Махов – вдвое быстрее звука.

Шум – это неприятный звук. Измеряется уровень шума в децибелах (дБ). Шум свыше 120 дБ может вызвать боль. При падении листа звук в 10 дБ, а при взлете самолета – 110 дБ. Из всех животных самые громкие звуки может издавать синий кит – 188 дБ. Его можно услышать за 850 километров.

Как делается аудиограмма

Пациент с направлением на аудиометрию приходит к врачу на назначенное время. Готовиться к данному исследованию не надо. Перед началом диагностической процедуры пациенту обязательно проводится отоскопия – осмотр уха. Если наружное и среднее ухо, а также барабанная перепонка находятся в нормальном состоянии, начинается аудиометрия. В случае нахождения в ушах серных пробок, сначала следует удалить их, а потом уже продолжать обследование.Для проверки воздушной проводимости пациенту надевают наушники, костной – вибрирующий аппарат на участки за ушами. Сначала проверяют, как слышит человек звуки стандартных частот, затем, если есть необходимость, в расширенном частотном диапазоне (от 125 до 20 тыс. Гц).

Через наушники или вибрирующее устройство компьютером поочередно подаются звуки разной частоты и интенсивности. Задача пациента во время исследования – нажимать на специальную кнопку или говорить врачу, когда будет отчетливо расслышан звук. Каждый сигнал, который передает обследуемый, компьютер запоминает, а потом преобразует в графики – аудиограммы.

В целом вся процедура аудиометрии длится около 30 минут. Она не вредна для здоровья, поэтому обследоваться человек может столько раз, сколько будет необходимо в ходе диагностики и лечения.

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции — когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн — это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать «по фазе», а также могут совпадать и спады по «противофазе». Именно так и характеризуются биения звука

Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно

Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при «встрече» таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов)

При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях

Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление «сложения» или «вычитания» будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Улитка

Улитка напоминает спираль, состоит она из костной ткани. Она очень надежная и прочная.

К функциям данного отдела относятся:

проведение через протоки звуков;
трансформация звуков в импульсы, поступающие затем в головной мозг;
ориентирование человека в пространстве, стабильное равновесие.

Главные органы равновесия – перепончатый лабиринт и протоки. Структура органа позволяет установить, где находится звуковой источник, и хорошо ориентироваться в пространстве. Благодаря внутреннему уху можно определить, откуда и с какого направления исходят звуки. Равновесие, за которое отвечает данный орган, позволяет человеку стоять, не наклоняться и не падать. Если что-то нарушается, то появляются головокружение, неровная ходьба, наклоны и невозможность стоять.

Отделы слуховых органов взаимосвязаны друг с другом. Чтобы данный орган нормально функционировал, необходимо придерживаться несложных рекомендаций и правил. При малейшем дискомфорте нужно сразу же обращаться к врачу. Не слушать музыку на большой громкости и соблюдать гигиену раковин ушей. Анатомия более детально описывает особенности органа слуха.

Взаимодействие двух тонов.

Когда два чистых тона воспринимаются ухом одновременно, могут наблюдаться следующие варианты их совместного действия, зависящие от природы самих тонов. Они могут маскировать друг друга, взаимно уменьшая громкость. Это чаще всего происходит, когда тоны не сильно различаются по частоте. Два тона могут соединяться друг с другом. При этом мы слышим звуки, соответствующие либо разнице частот между ними, либо сумме их частот. Когда два тона очень близки по частоте, мы слышим единый тон, высота которого примерно соответствует данной частоте. Этот тон, однако, становится то громче, то тише, поскольку два слегка несовпадающих акустических сигнала непрерывно взаимодействуют, то усиливая, то гася друг друга.

Распространение звука

Проведем эксперимент. Под стеклянным колпаком поместим на поролоновой подушке электрический звонок. Затем откачиваем воздух из колпака. В процессе откачивания воздуха слышно, что звук, который издает звонок, становится все тише, хотя сквозь стекло хорошо видно, что звонок продолжает работать. В конце концов, звук вообще исчезнет.

Какой вывод из этого эксперимента? Для распространения звука необходима определенная среда. Среда может быть разной: воздух, вода, стекло, земля. Главное, чтобы среда, в которой распространяется звук, была упругой при изменении ее формы или объема. Заметим, что воздух не имеет никаких преимуществ по сравнению с другими веществами в части возможности распространения в нем звуков. Разве что в разных средах звуковые волны движутся с разной скоростью.

При распространении звука в среде происходит его поглощения. Знание законов поглощения помогает определять, например, дальность распространения звукового сигнала. Поглощение звука обусловлено причинами, связанными со свойствами самого звука (прежде всего с его частотой) и со свойствами среды. Например, в морях на некоторых глубинах образуются определенные условия для сверхдальнего распространения звука, так называемый водяной звуковой канал. Звук подводного взрыва распространяется в таком канале на расстояние более 5000 км.

При распространении звука в атмосфере происходит его рассеивание. На рассеивание звука влияют температура и давление, сила и скорость ветра.

Изучение того, как рассеивается звук в различных средах, дает информацию о внутреннем строении и физическом состоянии газов, жидкостей и твердых тел. Называется это звуковой локацией.

Слуховой механизм

В среднем ухе используются три крошечные кости: молоток, наковальня и стремени, которые передают колебания от барабанной перепонки к внутреннему уху.

Слуховая система человека состоит из трех основных компонентов : наружного, среднего и внутреннего уха.

Наружное ухо

Наружное ухо включает ушную раковину , видимую часть уха, а также слуховой проход , который заканчивается барабанной перепонкой , также называемой барабанной перепонкой. Ушная раковина служит для фокусировки звуковых волн через слуховой проход к барабанной перепонке. Из-за асимметричного характера внешнего уха у большинства млекопитающих звук по- разному фильтруется на пути к уху в зависимости от места его происхождения. Это дает этим животным возможность локализовать звук по вертикали . Барабанная перепонка представляет собой воздухонепроницаемую мембрану, и когда звуковые волны попадают туда, они заставляют ее вибрировать в соответствии с формой волны звука. Церумин (ушная сера ) вырабатывается серными и сальными железами в коже слухового прохода человека, защищая слуховой проход и барабанную перепонку от физического повреждения и микробной инвазии.

Среднее ухо

Среднее ухо состоит из небольшой наполненной воздухом камеры, расположенной медиальнее барабанной перепонки. Внутри этой камеры находятся три самые маленькие кости в теле, известные вместе как косточки, которые включают молоток, наковальню и стремечко (также известные как молоток, наковальня и стремени, соответственно). Они способствуют передаче колебаний от барабанной перепонки во внутреннее ухо, улитку . Назначение косточек среднего уха — преодолеть несоответствие импеданса между воздушными волнами и волнами улитки путем обеспечения согласования импеданса .

В среднем ухе также расположены стремечковая мышца и натяжная барабанная мышца , которые защищают слуховой аппарат посредством рефлекса жесткости. Стремечка передает звуковые волны во внутреннее ухо через овальное окно , гибкую мембрану, отделяющую заполненное воздухом среднее ухо от заполненного жидкостью внутреннего уха. Круглое окно , другая гибкая мембрана, позволяет гладкому перемещению жидкости внутреннего уха , вызванная поступающими звуковые волнами.

Внутреннее ухо

Внутреннее ухо — небольшой, но очень сложный орган.

Внутреннее ухо состоит из улитки , которая представляет собой спиралевидную трубку, заполненную жидкостью. Он разделен вдоль кортиевого органа , который является основным органом механической нервной трансдукции . Внутри кортиева органа находится базилярная мембрана , структура, которая вибрирует, когда волны от среднего уха распространяются через улитковую жидкость — эндолимфу . Базилярная мембрана тонотопна , поэтому каждая частота имеет характерное место резонанса вдоль нее. Характерные частоты высокие у базального входа в улитку и низкие на вершине. Движение базилярной мембраны вызывает деполяризацию из волосковых клеток , специализированная слуховые рецепторы , расположенные внутри органа Корти. Хотя волосковые клетки сами не производят потенциалы действия , они выделяют нейротрансмиттер в синапсах с волокнами слухового нерва , который действительно производит потенциалы действия. Таким образом, паттерны колебаний базилярной мембраны преобразуются в пространственно-временные паттерны выстрелов, которые передают информацию о звуке в ствол мозга .

Нейронный

Боковая лемниска (красная) соединяет нижние слуховые ядра к нижнему бугорку в среднем мозге.

Звуковая информация из улитки проходит через слуховой нерв в ядро улитки в стволе мозга . Оттуда, проецируется на нижний бугорок в среднем мозге тектуме . Уступает бугорок интегрирует слуховой вход с ограниченным входом из других частей мозга и участвует в подсознательных рефлексах , такие как слуховая реакция испуга .

Нижний бугорок, в свою очередь, проецируется на медиальное коленчатое ядро , часть таламуса, где звуковая информация передается в первичную слуховую кору в височной доле . Считается, что звук сначала осознанно воспринимается первичной слуховой корой . Вокруг первичной слуховой коры находится область Вернике, область коры, участвующая в интерпретации звуков, которая необходима для понимания произносимых слов.

Нарушения (например, инсульт или травма ) на любом из этих уровней могут вызвать проблемы со слухом, особенно если нарушение двустороннее . В некоторых случаях это также может привести к слуховым галлюцинациям или более сложным проблемам с восприятием звука.

Мифы об инфразвуке

В ряде кино- и телефильмов активно эксплуатируется тема инфразвукового оружия, которое физически вполне возможно, однако при его описании сценаристы попадают впросак, поскольку слабо или вообще не знакомы с физикой излучения и приёма волн, в т. ч. акустических. Например, в эпизоде «Крысобой» телесериала «След» фигурирует носимый преступником автономный компактный направленный (т. е. безопасный для оператора) излучатель инфразвуковых волн, встроенный в корпус компьютера-планшета, из-за которого гибнут несколько человек.

Однако такое устройство нереализуемо вследствие физических причин:[источник не указан 477 дней] для частоты 7 Гц длина инфразвуковой волны составляет около 47 м. Величину не менее порядка этого значения должен иметь линейный размер акустического излучателя для хорошей её генерации. Причём если предположить, что каким-либо образом излучатель инфразвука размером с носимый в руках планшет (линейным размером 25-30 см, много меньшим длины волны в 47 м) способен генерировать волну с интенсивностью, достаточной для летального воздействия на организм человека (например за счёт направляемой в него большой мощности), то исходя из фундаментальных свойств излучения волн его действие будет всенаправленным, и первой жертвой станет сам оператор такого устройства[источник не указан 477 дней]. Кроме того, на настоящем этапе развития техники обеспечение генерирования инфразвуковых волн с достаточной для летального действия энергией является серьёзной технической проблемой[источник не указан 477 дней]. В качестве реализуемого на сегодняшний день источника такого акустического излучения[источник не указан 477 дней] предполагается использование мощных авиационных реактивных двигателей с резонаторами, что снова исключает возможность переноса и использования такого устройства одним человеком[источник не указан 477 дней].

Источники инфразвука

Инфразвук часто появляется в природе. Извержения вулканов, грозы, смерчи и землетрясения, падения метеоритов выбрасывают мощную звуковую волну. Но сила инфразвука, образованного взрывом ядерной бомбы, намного больше.

Когда на Земле бывают периоды большой геомагнитной активности, инфразвуковые волны тоже облетают земной шар. И также источниками являются крупногабаритные конструкции и механизмы, чье колебание из-за размеров не может превышать 16 раз в минуту. Это техника и здания. Инфразвуковые частоты также выдают самые крупные трубы органов в церквях. Но эти частоты близки к слышимым человеком.

Гиперзвук

Длина волны вычисляется путем деления скорости на частоту, поэтому с увеличением частоты длина волны уменьшается. Можно создать колебания настолько высокой частоты, что длина волны будет одного порядка с длиной свободного пробега молекул газа, например, воздуха. Это и есть гиперзвук. Он плохо распространяется, потому что воздух перестает считаться сплошной средой, т. к. длина волны ничтожно мала. В нормальных условиях (при атмосферном давлении) длина свободного пробега молекул равна 10-7 м. Каков диапазон частот волн? Звуковыми они не являются, потому что мы их не слышим. Если рассчитать частоту гиперзвука, то окажется, что она составляет 3×109 Гц и выше. Измеряют гиперзвук в гигагерцах (1 ГГц = 1 миллиард Гц).

Приемники звука

Приемником звука является ухо. Наше ухо воспринимает в виде звука колебания, частота которых лежит в пределах от 16 до 20000 Гц. Итак, механические волны с частотой от 20 до 20000 Гц, вызывающие у человека ощущение звука, называются звуковыми.

Как вы уже знаете, звуковые волны распространяются в воздухе как перемежающиеся области с изменяющимся давлением, то есть эти волны являются продольными. Эти волны воздействуют на мембрану в нашем ухе, называемую барабанной перепонкой, заставляя ее колебаться, а слуховой нерв улавливает эти колебания и посылает сигналы в мозг. Так мы слышим звук.

Указанные границы звукового диапазона условные, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно верхняя частотная граница звуков, воспринимаемых ухом, с возрастом значительно снижается — некоторые пожилые люди могут слышать звуки с частотами, не превышающими 6000 Гц.

Ухо является естественным приемником звука, однако созданы и искусственные приемники звука. Наиболее широко используются различные микрофоны. Они превращают звуковые колебания на колебания электрического тока, благодаря чему появилась возможность записывать звук и передавать его на большие расстояния.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий